Bounds on Certain Higher-dimensional Exponential Sums via the Self-reducibility of the Weil Representation

نویسندگان

  • SHAMGAR GUREVICH
  • RONNY HADANI
چکیده

We describe a new method to bound certain higher-dimensional exponential sums which are associated with tori in symplectic groups over finite fields. Our method is based on the self-reducibility property of the Weil representation. As a result, we obtain a sharp form of the Hecke quantum unique ergodicity theorem for generic linear symplectomorphisms of the 2Ndimensional torus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on the Self-Reducibility of the Weil Representation and Higher-Dimensional Quantum Chaos

In these notes we discuss the self-reducibility property of the Weil representation. We explain how to use this property to obtain sharp estimates of certain higher-dimensional exponential sums which originate from the theory of quantum chaos. As a result, we obtain the Hecke quantum unique ergodicity theorem for a generic linear symplectomorphism A of the torus T = R 2N /Z 2N .

متن کامل

Notes on self-reducibility of the Weil representation and higher-dimensional quantum chaos

In these notes we discuss the self-reducibility property of the Weil representation. We explain how to use this property to obtain sharp estimates of certain higher-dimensional exponential sums which originate from the theory of quantum chaos. As a result, we obtain the Hecke quantum unique ergodicity theorem for generic linear symplectomorphism A of the torus T = R 2N /Z 2N .

متن کامل

Self-reducibility of the Weil Representation and Higher-dimensional Quantum Chaos

In this paper we establish the self-reducibility property of the Weil representation. We use this property to obtain sharp estimates of certain higher-dimensional exponential sums which originate from the theory of quantum chaos. As a result, the Hecke quantum unique ergodicity theorem for generic linear symplectomorphism of the torus in any dimension is proved.

متن کامل

Notes on the Self-reducibility of the Weil Representation and Quantum Chaos

In these notes we discuss the self-reducibility property of the Weil representation. We explain how to use this property to obtain sharp estimates of certain higher-dimensional exponential sums which originate from the theory of quantum chaos. As a result, the Hecke quantum unique ergodicity theorem for generic linear symplectomorphism of the torus in any dimension is proved.

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010